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l. Introduction

In this monograph we give a mathematical analysis of
spectral methods for mixed initial-boundary value problems.
This theory is also useful for analysis of a variety of
finite element and finite difference methods (See Section 5).
However, before proceeding to the formal presentation of
the theory let us give some simple examples of the kinds
of behavior we wish to explain.

Spectral methods involve representing the solution to a
problem as a truncated series of known functions of the inde-
pendent variables. We shall make this idea precise in Sec. 2,
but we can illustrate it here by the standard separation of
variables solution to the mixed initial-boundary value problem

for the heat equation.

Example 1.1: Fourier sine series solution of the heat equation.

Consider the mixed initial-boundary value problem

2

au(gét) = 9 u(xét) 0 <x<m, t > 0) (1.1a)
9x

u(0,t) = u(m,t) =0 (t > 0) (1.1b)

u(x,0) = f(x) (0 < x < ) . (1.1c)

The solution is

u(x,t) an(t) sin n x , (1.2)

e~ 8
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a (t) = £ e (n=1,2,...4) (1.3)
where
m
fn = %.}rf(x) sin nx dx (n=1,2,.c44) (1.4)
0

are the coefficients of the Fourier sine series expansion of
f(x). Recall that any function in L2(0,w) has a Fourier sine
series that converges to it in Lz(o,n); the Fourier sine series
of any piecewise continuous function f(x) which has bounded
variation on (0,w) converges to %[f(x+)+f(x—)] throughout

(0,7) (see Section 3).

A spectral approximation is gotten by simply iruncating

(1.2) to
N

ug(x,t) = ] a (t)sin nx (1.5)
n=1

and replacing (1.3) by the evolution equation

n 2
—d—t = = n a (n=l’-.-,N) . (1'6)

with the initial conditions an(O) = fn (n=1,...,N) .
The spectral approximation (1.5-6) to (l1.1) is an ex—.

ceedingly good approximation for any t > 0 as N » «

In fact, the error wu(x,t) - uN(x,t) goes to zero more rapidly

-Nzt

than e as N » = for any t > 0 . 1In contrast, a finite

difference approximation to the heat equation using N grid points

~
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in x but leaving t as a continuous variable (a 'semi-
discrete' approximation) leads to errors that decay only
algebraically with N as N > =, [Of course, if we solve
(1.6) by finite differences in t the error of the spectral
method would go to zero algebraically with the time step At.
However, we shall neglect all time differencing errors for now
and study only the convergence of semi-discrete approximations.

Time-differencing methods are discussed in Section 10.]

Example 1.2: Fourier sine series solution of an inhomogeneous

heat equation.

Not all spectral methods work as well as the trivial one

just outlined in Example l.1l. Consider for example the solution

to the problem
%% =24, (0 < x<mw, t>0)

with the same initial and boundary conditions as before.

The Fourier sine coefficients of the exact solution are now

e (1.7)

where e, = 0 if n 1is even and e, = 1l if n 1is odd. Spectral

approximations are now given by (1.5) with (1.6) replaced by

—_ = - n a + — e (n=l,.--,N) ’



the solution of which is (1.7) for n=1,...,N. Now the
truncation error u(x,t) - uN(x,t) no longer decays exponentially
as N +» o ; the error is of order N_3 as N » = for fixed
X, 0<x<m, and t > 0 . In other words, the results

to be anticipated from this spectral method behave asymptotically

as N » ® in the same way as those obtained by a third-order

finite-difference scheme [in which the error goes to zero like

3
3 = (/7.

Ax

The last example may be disturbing but even more serious
difficulties confront the unwary user of spectral methods, as
the next example should make amply clear.

Example 1.3: Fourier sine series solution of the one-

dimensional wave equation.

Consider the mixed initial-boundary value problem for the

one-dimensional wave equation

du(x,t) du(x,t)

5t + T - = X+t t (0 <x<m, t>0) (1.8a)
u(0,t) =0 (t > 0) (1.8Db)
u(x,0) =0 (0 < x < m) (1.8¢)
The exact solution to this well posed problem is u(x,t) = xt.

This solution can also be found by Fourier sine series expansion
of u(x,t). To do this, we substitute (1.2) into (1.8) and re-

expand all terms in sine series. The Fourier expansion of 3u/dx is




bn(t)sin nx (1.09)

where integration by parts gives

Ui 3 L
b (t) = % £ 5% sin nx dx, = - %? é u cos nx dx
® T
= - %?ﬁzl a_(t) f sin mx cos nx dx, , (1.10)

_ 4 T nm
=7 1 3.
n -m

m=1
m+n odd

n+1l

Also the Fourier sine coefficients of x are 2/n(-1) and

the Fourier sine coefficients of t are (4t/nn)en, where e, = 0

if n is even and e, = 1 if n 1is odd. Equating coefficients

of sin nx in (l1.8a) we obtain

da o
n_ _ 4 nm 2 (_1yr 4 4 = 1
= - = 2 55 %, ~ o (-1)" + - te, (n=1,2,...). (1.11)
m=1 n- -m
m+n odd
The Fourier sine coefficients of the exact solution
u(x,t) = xt are

_ 2 n
an(t) = -5 (-1)"'t (nv= 1,2,...)

It is easy to verify by direct substitution that these coefficients
satisfy (1.11) exactly; in particular, the sum in (1.11) converges

for all t.



Now suppose we employ a spectral method based on Fourier
sine series to solve this problem. We seek a solution to (1.8) in
the form of the truncated sine series (1.4). If the exact co-
efficients an(t) are used in (1.4) then u(x,t) - uN(x,t) + 0
as N » o ; for each fixed x, 0 < x < w, and t > 0 the
error is of order 1/N as N + « (see Section 3).

However, it is not reasonable to assumevthat the expansion
coefficients an(t) are known exactly in this case because of
the complicated couplings between various n 1in the system
(1.11) It is more reasonable to determine them by numerical

solution of an approximation to (l1.1l1). Galerkin approximation

(see Sec. 2) gives the truncated system of equations

N
4 _hm_ 2 -+ L te (n=1 N) (1.12)
= 22 %m " n n =1l,44., .
m=1l n -m
m+n odd

The truncation of the infinite system (1.11) to the finite
system (1.12) is a standard way to approximate infinite coupled
systems. Unfortunately, it does not always work. In Figs. 1.1 - 1.2
we show plots of the approximations uN(x,t) at t =5 given
by (1.4) for N = 50,75. These plots are obtained by numerical
solution of (1.12) with an(O) = 0; the time steps used in the
numerical solution of (1.12) were so small that time differencing

errors are negligible. It is apparent that the approximate solu-




tions with N finite do not converge to the exact solution as N

increases. The divergence of this spectral method will be ex-

plained in Section 6.

Not all spectral methods give such poor results. A properly
formulated and implemented spectral method gives results of
striking accuracy with efficient use of computer resources.

The choice of an appropriate spectral method is governed by
two main considerations:

(i) Accuracy. In order to be very useful a

spectral method should be designed to give results

of far greater accuracy than can be obtained by

more conventional difference methods using similar

spatial resolution or degrees of freedom. The choice

of appropriate spectral representation depends on the

kind of boundary conditions involved in the problem.

(ii) Efficiency. In order to be useful the spec-

tral method should not be very much less efficient

than difference methods with comparable numbers of

degrees of freedom. For similar work, spectral

methods should produce much more accurate results

than conventional methods.
In Section 14, we present a catalog of different spectral methods
and indicate the kinds of problems to which they can be most use-
fully applied. |

Many examples of efficient and accurate spectral methods will

be given later.




2. Spectral Methods

The problems to be studied here are mixed initial-boundary

value problems of the form

iEigéEl = L(x,t)u(x,t) + f(x,t) (xe D, t>0) (2.1)

|
o

B(x)u(x,t) (x € 3D, t > 0) (2.2)

g (x) (x € D) (2.3)

u(x, 0)

where D is a spatial domain with boundary 93D , L(x,t) is a

linear (spatial) differential operator and B(x) 1is a linear

(time independent) boundary operator. Here we write (2.1-3)

for a single dependent variable u and a single space coordinate

x with the understanding that much of the following analy-

sis generalizes to systems of equations in higher space di-

mensions. Also, attention is restricted to problems with

homogeneous boundary conditions because the solution to any

problem involving inhomogeneous boundary conditions is the sum of

an arbitrary function having the imposed boundary values and

a solution to a problem of the form (2.1-3). The extension to

nonlinear problems will be indicated at the end of this section.
Before discussing spectral methods for solution of (2.1-3) let

us set up the mathematical framework for our later analysis.

It is assumed that, for each 't ,. u(x,t) 1is an element

"of a Hilbert space H with inner product ( , ) and norm

| || . For each t > 0, the solution' u(t) belongs to

the subspace B of H consisting of all functions u ¢ H

! we will often denote u(x,t) by u(t) when discussing u as
a function of  t.
-8




satisfying Bu = 0 on 3D . We do not require that u(x,0)=g(x)e B

but only u(x,0)e H . The operator L is usually an unbounded
differential operator whose domain is dense in H but does

not include all functions u e H . For example, if

L = 3/3x and H= L2(0,l), the domain of L can be

chosen as the set of all absolutely continuous functions on

0 <x <1, a set that is dense in # but smaller than #H .

If the problem (2.1-3) is well posed, the evolution operator

is a bounded linear operator from H to B . Since this
evolution operator is bounded, its domain can be extended in

a standard way from the domain of L to the whole space H
(Richtmyer and Morton, 1967, p. 34). For notational convenience
we shall assume henceforth that L 1is time independent so that
the evolution operator is exp(Lt). In this case the formal so-

Jution of (2.1-3) is

t
u(t) = e*tu(o) +f el (t-8) £ 5yas (2.4)
0

This formal solution is justified under the conditions
that f(t) , Lf(t) , and L2f(t) exist and are continuous

functions of t in the norm |

| for all t 2 0 (see
Richtmyer and Morton, 1967).

The semi-discrete approximations to (2.1) to be studied here

are of the form



BuN(x,t)

= Ly uN(x,t) + fN(x,t) (2.5)

where, for each ¢t , uN(x,t) belongs to an N-dimensional sub-

space B of B, and LN is a linear operator from H to BN

of the form

L,=P_ LP . (2.6)

Here Py is a projection operator of H onto BN and

fN = PNf . We shall assume that B N CB M when N < M .

For definiteness, we shall also assume the initial conditions for
the approximate equations (2.5) to be uN(O) = PNu(O) where

u(0) = g({x) 1is the initial condition (2.3). Specific

examples of projections PN and the resulting approximations

LN will be given below.

According to this general framework, the formulation of a
spectral method involves two essential steps: (i) the choice of

approximation space ESN; and (ii) the choice of the projection
operator PN . It will turn out that the mathematical analysis

of the methods also involves two key steps: (i) the analysis of

how well functions in H can be approximated by functions in

By (see Section 3) and, in particular, the estimation of
| lu - PNuIE for arbitrary wueH; and (ii) the study of the
'stability' of LN (see Section 4). Finally, there are the




important practical questions of how to time difference (see Sec-
tion 10) and how to implement spectral methods efficiently (see
Section 11). All these considerations will be tied togetcher in

Section 14 when we summarize our results on choosing a spectral method.

Galerkin or spectral approximation

A Galerkin approximation to (2.1-3) is constructed as follows
(Collatz 1960, Orszag 197la). The approximation Uy is sought in

the form of the truncated series

N
uy (x,t) = Xlan(t) ¢, (x) (2.6)
n=

where the time-independent functions ¢, are assumed linearly
independent and ¢ne B n for all n. Thus uN(x,t) necessarily
satisfies all the boundary conditions. The expansion coefficients

an(t) are determined by the Galerkin equations

22 (o uy) = (o /L uy + (4,0  (n=l,...,M) (2.7)

or

N da
m

L Gnrtn) 3

N
) = mzlam(¢n,L¢m) + (o ,f) .

These implicit equations for an(t) can be put into the
standard explicit form (2.4-5) by defining the projection

operator PN by

N N

Py (x) = nzl mzlpnm(¢m,u) ¢, (%) ' (2.8)

-11-



where p = are the elements of the inverse of the N x N

matrix whose elements are (¢n,¢m) .

Example 2.1: Fourier sine series

If we choose H = Lz(o,ﬂ) and ¢n(x) = sin nx , we re-
cover the Galerkin approximations given in Example 1.1-2 for the
heat equation and in Example 1.3 for the wave equation. Every
function ueLz(O,w) has a Fourier sine series that convérges
in the L, norm, so that [ ju - P || 0 as N » =,

However, as illustrated bi Example 1.3, this does not
ensure that u converges to u as N » o

N

Example 2.2: Chebyshev series

We choose H to be the space of functions on

the interval |x| < 1 that are square integrable with respect

to the weight function l/\/ 1-x2 . If the problem is
U + u, = f(x,t) (-1 < x < 1, t > 0) , (2.9a)
u(~-1,t) = 0, u(x,0) = g(x) , (2.9b)

which is a slight generalization of Example 1.3, it is appro-

priate to choose the ekpansion functions for the Galerkin approxi-

mates to be ¢ (xX) =T (x) - (-1)nT (x). Here T (x) is the
n n o] n

Chebyshev polynomial of degree n definied by Tn(cose) = cos nb
2
when x = cosf ; thus, TO(X) =1, Tl(x) = X, Tz(x) = 2x -1, T3(x) =
3 . e
4x” - 3%X,...,. Observe that ¢n(x) satisfies the boundary condition

-12-




n _
4. (1) = 0 because Tn(~l) = (-1) for all n. The properties

of Chebyshev polynomials are summarized in Section 15.

The Galerkin equations (2.7) are obtained explicitly as
follows. First the the definition of Tn(x) and the substi-

tution x = cos 6 imply that

n
- =1
(_Tn,Tm) = fcosn 0 cosm 846 = 5 Cp Gnm'
0
where
1 2
(£,9) =f £(x)g(x)//1-x° ax
-1
Here €5 =2, ¢ = l\(n >0) and & =0 if n #m, 1 if
n = m. Therefore,
_ I _1yh+m
(¢n'¢m) = 3% Gnm + (-1) .
Next, the Chebyshev polynomials satisfy
T! . (x)  T!' . (x)
n+l n-1
as may be verified by substituting x = cos 6. Therefore,
ﬁ(-l)n+1m + mm n <m, m+ n odd
(0,r04) = {m(-1)"*In n>m, m+n odd
0 n + m even

Using these results, (2.7) gives the Galerkin approximation

-13-




dan n a4 N m N
—Di2-D" = J (-nTa_=-2 3 pa_ +
dt dat >, m p=n+1 P
~ p+n odd
n N 2 n %
+ 2(-1) Z o) ap + £+ 2(-1) £, (n=1,...,N)
_ p=1
p odd
Here fn = (Tn,f) for n=0,...,N.

These Galerkin equations can be simplified by introducing
N
the notation ag = - Z (-l)mam, so that (2.6) becomes
m=1

N
uN(x,t) = zo an(t)Tn(x). (2.10)
n=

Substituting the ahove expression for 2q» the Galerkin dynamical

equations can be rewritten as

daj, 2 ? 2 1 n
= 5 pa_ + f + — b(t)(-1) {n=0,...,N) (2.11)
dt Cn p=n+l P n Cn ’ ’ ’
p+n odd

-1)%a_ =0 . (2.12)
n=9J

Here b(t) is a 'boundary' term that ensures maintenance of

the boundary condition (2.12). Using (2.12) it is easy to show that

|

- Y n, 2 2 1 auN | fé n_
b(t) = (-1) (na_+f _|= — | =— | - (-1)°f ]
N+ [géb n n] +l [Bx 'x- 1 n=0 n

2

Nof -

-14-




Tau approximation

The tau approximation (Lanczos 1956) is obtained by choosing the
expansion functions ¢n to be elements of a complete set of
orthonormal function ¢ (n=1,2,...) . The solution uy (x,t)
is assumed expanded in the series

N+k
uglx,t) =1 a ()o (x) , (2.13)
n=1
which is similar to (2.6), but now the expansion functions ¢n
are not required individually to satisfy the boundary con-

straints (2.2). Here k is the number of independent boun-

dary constraints BuN = 0 that must be applied. The constraints

N+k
nzl a_ B¢ =0 (2.14)

are imposed as part of the conditions determining the expansion co-
efficients a, of a function in BN' The projection operator

PN is defined by

oc N k
é An¢n> = z Andp ) b dN+m (2.15)

-15-




where bm (n=1,...,k) are chosen so that the boundary con-
straints Bu = 0 are satisfied. It follows from these de-

finitions that the tau approximation to (2.1-2) is given by

(2.13) with the k equations (2.14) and the N equations

= (¢nlL uN) + (¢nlf) (n=11--~lN) (2.16)

An equivalent formulation of the tau method is given as

follows: The equations for the expansion coefficients an, of the

exact solution u in terms of the complete orthonormal basis ¢n are

u(x,t) =} a (0)e (x) ,
n=1
dan
3t - (¢n:Lu) + (¢n,f) (n=1,2,...) (2.17)

The tau approximation equations for the N+k expansion co-

efficients of uy in (2.13) are obtained from the first N

equations (2.17) with u replaced by Uy and the k Dboundary

conditions (2.14). The origin of the name 'tau method' is that

the resulting approximation Uy is the exact solution to the modi-

fied problem

3u o

L uy + £+ )

(x) (2.18)

N
3t Tp(t)¢N+p

-16-




which lies in for all t > 0 . For each initial wvalue

B x
problem and choice of orthonormal basis ¢n’ there is a
choice of 1-coefficients such that uy € BNv, namely

Ju

T =

p (¢N+p' 5E§ - LuN—f) for p=1,2,°°-,

Example 2.3: Fourier sine series

For all of the applications given in Example 2.1, Galerkin
and tau approximations based on ¢n =\f%7 sin nx are identical
(except for the scaling factor 2/m ) since the orthonormal

expansion functions ¢n satisfy the boundary conditions.

Example 2.4: Chebyshev series

_ 1
I1f we choose ¢n+l(x) = —;— Tn(x) where
n
(n > 0) and apply the tau method to the problem (2.9) the result

Co = 2, c, = 1
can be recast into the form of equations (2.10-12) with b(t) = 0
and (2.11) only applied for n=20,1,...,N-1 instead of
n=0,1,...,N. Thus, the tau equations for the one-dimensional

wave problem (2.9) are

N
4en 2 £ 0 N-1 (2.19)
_- - & < < - .
at o L P 3 * fn 0 zxns )
p=n+l
p+n odd
N
(-1)" a_(t) =0 (2.20)
n=0

-17-



Example 2.5: Laguerre series

Here we choose 4 to be the space of functions that are
square integrable on 0 < x < ® with respect to the weight
function e ¥ . We choose the expansion functions to be
¢n(x) = Ln(x) where Ln(x) is the (normalized) Laguerre
polynomial of degree n . Ln(x) has the properties
(Ln'Lm) = Gnm R Ln(O) =1, and LA - LA+1 = Ln for all
n,m.

Suppose we wish to solve

u, +u, = £(x,t) (0 < x <=, t>0) (2.21a)

u(o,t) =0 u(x,0) = g(x) (2.21b)

by seeking an approximate solution of the form

i

ug(x,t) = 20 a (t)L_(x) (2.22)
n=

It is readily verified that the tau approximation (2.17) is

N
dan
T = L a + (L,f) (n=0,1,...,N-1) (2.23)
p=n+1l ~

while the boundary condition is

N

) a =0 (2.24)
n=0

-18-




Similarly, the Laguerre-tau approximation to the heat

equation problem

u, = u .+ fxt) (0 < x <=, t >0)
(2.25)
u(o,t) =0 u(x,0) =g(x)
is given by (2.22), (2.24) and
dan N
T = L f(em-Daj + (L,£)  (p=0,1,...,N-1) (2.26)
p=n+1l

Collocation or pseudospectral approximation

The projection operator P for collocation [sometimes

N
called the method of selected points (Lanczos 1956) or pseudospectral
approximation (Orszag 1971a)] is defined as follows. Let

Xy rXgreee Xy be N points interior to the domain D. These

points are called the collocation points. Also let ¢n(X)

(n=1,...,N) be a basis for the approximation space B—N and

suppose that det ¢n(xm) # 0. Then for each u ¢ H

Pu= a ¢, (x) N | ‘(2.27)

where the expansion coefficients a are the solutions of the

equations

-19-



) a ¢n(xi) = u(xj) (i=1,...,N) .

n=1

Thus, collocation is characterized by the conditions that
= . i = .o d P
PNu(xi) u(xl) for i 1, ,N an

the results of collocation depend on both the points

B
NYE Py -

the functions ¢n(x) for n=1,...,N .

Example 2.6: Fourier sine series

If we wish to solve the problems formulated in Examples

1.1-3 by collocation instead of Galerkin or tau methods

we proceed as follows. The space H

the expansion functions ¢n(x) = sin nx (n=l1l,...,N)
collocation points Xy = 73/ (N+1) (3=1,...,N).
collocation equations

N Tin

Z a_ sin ﬁ%T = u(xj) (3=1,...,N)

n=1
have the solution

2 N 3
- 2 .. Tjn _
a, = NI jzl u(xj)smn N1 (n=1,...,N)

This result follows from the relation

(2.28)

Notice that

and

= L2(0,n) and we choose

. min . 7kn - N+1
ngl Sin 9F1 SIP [T 7 S5k

-20-
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(2.29)

(2.30)




valid for 0 < j,k < N+l . Thus,

Pgu = ) a, sin nx (2.31)

where a_  is given by (2.30).

It follows from (2.29-31) that

N
P LPyu =} b sin nx

n=1l

2 ~ . 2,2

where bn ==-n" a, (n=1,...,N) if L = 3“/93x“, and
“ N . Tn
m sin ——s
_ 2 N+1 _
b, = o L — 5 7% °n (n=1,...,N)
m=1 N+1 N+1

m+n odd

if L = 3/9x .

ixample 2.7: Chebyshev collocation for the wave equation

Suppose we wish to solve the one-dimensional wave problem
(2.9) using collocation. An appropriate basis for the approxi-
mation space BN is the set of functions ¢n(x) = Tn(x) - (—l)nTO(x)
(n=1,...,N) introduced in our discussion of Example 2 above.

. We choose the collocation points to be the extrema of the

Chebyshev polynomial T (x) satisfying x| <1 . since
TN(cos 8) = cos N8 these extrema lie at x_., = cos %% '

j =0,...,01 . The point x =-1 is also an extremum of

-21-



TN(x) but it is not included in the set of collocation points
because the boundary conditions for (2.9) are imposed at x = -1
soO° ¢n(—l) =0 for all n .

As in Example 2.2, the expansion coefficients a, for

N
n=1,...,N may be augmented by defining ag = - Z (-l)m a

m
m=1

so that
N

uglx,t) = I a (&)T (x) .
n=0

It may easily be shown that the collocation equations for

an(t) that follow from (2.9) are

a N
°n 2 ) £ L b(t) (-1)®  (n=0 ) (2.32)
_ = - < p a_ + + = t) (- n=0,...,N .
dt cn p=n+l n an ' '
p+n odd
N n
) (-=1) a (t) =0 (2.33)
n=0
where fn = (Tnff) and Cy =Cy = 2, c, = 1 (0 <n<nN).

Here b(t) 1is a 'boundary' term that is used to ensure complianée

with the boundary condition (2.33). It is easy to show that
N du N |
_ 1 n A l N . A
b(t) = - = ~ 2 = = - n
(t) N nzo( 1) (n atf ) = 5 [Bx . nzo(_l) f;]

-22-




. The reader should observe the close similarity between the
Chebyshev Galerkin, tau, and collocation equations for the problem
(2.9). The only difference between them is the way the boundary
term b(t) enters. In the Galerkin equations (2.11), b(t) appears
with the coefficient (-l)n/cn; in the tau equations b(t) enters
with the coefficient ¢ so it appears only in the equation for

nN
ay as a tau coefficient; with collocation, the coefficient of
b(t) is (-l)n/En. This close similarity between the three methods
for the wave equation can also be seen by observing that when

f(x,t) 1is a polynomial of degree N in x, all three approxi-

mation methods give Nth degree polynomial approximations uN(x,t)

- that satisfy exactly the initial value problem
auN BuN
§E— <+ §§— = f(x,t) + T(t)QN(X) (2.34)
uN(O,t) =0 .

In the tau method, QN(x) = TN(x); in collocation,

N
N-1 n+N
Qu(x) = 71 (x=xy) = 22N pLI g ) = X 2l N gypt ()
. j n N N
=0 n=0 n
™ , .
where xj = Ccos S (3 = 0,...,N-1) are the collocation points;

finally, the Galerkin equations (2.10) are obtained if
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For all three methods T(t) is uniquely determined by the
requirement that uN(x,t) be a polynomial of degree N in X
for all t.

Example 2.8: Chebyshev spectral methods for the heat equation

To illustrate further the nature of the differences between
Galerkin, tau and collocation methods, we apply them to the

heat equation

2
%%-= 3—% + f(x,t) (F-l<x<1, t>0)
ax

u(-1,t) =u(l,t) =0 (t > 0}, u(x,0) = g(x) (-1 < x < 1).
We approximate u(x,t) by

N
ug (x,t) = I a ()T (x) .

=0

The Galerkin, tau, and collocation equations for an(t) are all

of the form

Eiﬂ = L g (p%-n?)a +f (t)+b, (t)B, _+b_ (t)B (2.35
dat ch p=n+2 pip P n 1 In 72 2n -33)
p+n even
N N n
I a = ] (=1) a =0, (2.36)
n=0 . n=0
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A

where £
n

(Tn,f). Egs. (2.36) are just a restatement of

uN(il,t) = (. The terms bl(t) and b2(t) in (2.35) are

boundary terms that ensure compliance with the boundary condi-
tions (2.36). The only differences between the three approximation
methods lies in the coefficients Bin and Bone
In the tau method,

Bln = 6n,N-1 ’ B2n = 6nN . (2.37a)
In the Galerkin method,
n
= L - (=1)"
B1n =2 ’ B2n = -3 ; (2.37b)
n n
this result follows using the expansion functions
To(x) n even
¢_(x) =T (x) -
n n Tl(x) n odd
that satisfy ¢n(il) = 0 and augmenting the expansion coef-
ficients a ~for n > 2 by a;= - Z a, ~and a; = - ) ay .1 -
Finally, with collocation performed at the points xj = cos %%
(j =1,2,...,N-1) the coefficients Bln and B2n in (2.395)
are given by
o
1 (-1) . _ :
B = - B = - . . (2-37C
1n ch 2n cp, c)
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It may also be verified that the boundary terms b, (t)

and bz(t) are of the form

' 524 N 524 N ns
b, (£) = ¢, ;;51 + nzofn +Cy_ 5;7; + nzo(—l) £ (2.38)
x=+1 x=-1
for i = 1,2. Here
- = N
C1+ = % ’ Cl— %(-1) ’
— _ N+1
Cy, = =2, Cy_ = #(-1) :
for the tau method;
N
e =-S5 e =
" NT+N N +N
N
C = 12. ("1) C - N+%
2+ N2+N 2- N2+N
for the Galerkin method;
- 1 -
C1+ = - R Cl- =0
- = -1
Cop = 0O Con = - RN

for the collocation method.

In the previous examples the only difference between Galerkin,

tau, and collocation approximations is their treatment of the boundary

terms. However, in more complicated problems, there are significant

differences between these approximations.

the influence of gquadratic nonlinearity.
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Example 2.9: Chebyshev approximations to Burgers' equation

Chebyshev series approximations to the solution u(x,t) to

Burgers' equation

2

ou u . ,3u s

2+ usl \,a > (|x|%1,t>0) (2.39)
X

u(xl,t) =0

ulx,0) = £(x)

are obtained by methods very similar to those for linear eguations.

In general, spectral approximations to the nonlinear equation

Jdu _
—E— A(U-) (2.40)

are of the form

= = PNA(PNu (2.41)

N

where PN is a projection operator. The projection operator

PN can be that for Galerkin, tau, or collocation approximations.

If we write
ug(x,t) = [ a (£) T (x),

then the Galerkin approximation to (2.39) is given by

da
n _ _ - - 2__2 n
¢, F% = 27y P apaj +v } m(m®-n Ja, + b _(t) + b_(t) (-1)

|m| <N =n+2
: m+n even
iplsN (0<ngN) ,

m+p2n+l

n+m+p odd

(2.42a)
27~



N
Pa,= 1 a(-n%=0, (2.42Db)

where Em = c|ml alm! for |m| < N. The tau equations are identical

except that (2.42a) only applies for O SnsN-2 and b+ = b_ = 0.

On the other hand, the collocation equations obtained using the collo-

cation points xj = COS %% for j = 1,...,N-1 are just (2.42b) and
- dan - - - -
Shge - -21 paa -21 paa
m|<N |m| <N
|pl<N lp|2N
m+p>n+l m+p>2N-n+1
n+m+p odd n+m+p odd
B 2 2 =
+ v ] mm-nfHa + B () + b_(£)(-1)" (2.43)
m=n+2
m+n even
(0=n=N)

where EO =cy =2 and En =1 for n % 0,N. Observe the appear-
ance of the 'aliasing' term as the second sum on the right side of

(2.43). We shall discuss this term in more detail in Section 11.

Example 2.10: Chebyshev approximations to u, + F(u)x =0

Galerkin and tau approximations to the solution to
u

g ¥ Fla), =0 (2.44)

where F(u) is arbitrarily nonlinear, are very unwieldy both

to write down explicitly and to solve on a computer. On the one hand,
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collocation equations may also be hard to write down expliciily,‘
they lend themselves to ready solution without their explict form
being known!

The collocation approximation to (2.44) is obtained as follows.

We use the relation

auN

(F(uN))x = F! (uN) %

. (2.45)

Since BuN/ax can be computed explicitly in terms of u, as a poly-
nomial in x of degree N-1, it follows that (F(uN))x can be
evaluated by this formula at each of the collocation points assuming
that F'(z) is a known function; thus, the collocation approxima-
tion to (2.44) is determined.

There is a slightly different collocation procedure that can also
be applied to (2.44). It has the operator form

;Euﬂ +pg P Pl =0 (2.46)

which is usually not the same as the collocation approximation of
the form (2.41) described above. However, since PNF(uN) can be

computed by collocation from u and since the collocation approxi-

N
mation to P,3/3x has already been given in Example 2.7, auN/Bt is
determined by (2.46). The collocation approximation given by (2.41)

or (2.45) differs from (2.46) by the term

3
PN 3% (I—PN) F(uN)

which is generally not zero. However, if F'(z) is not known
accurately then (2.46) may be the only viable method. More details

on these collocation algorithms are given in Section 1l1.
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3. Survey of Approximation Theory

The remarkable convergence properties of spectral methods to
be discussed later owe to the rapid convergence of expansions of
smooth functions in series of orthogonal functions. We present
a summary of the relevant theory here.

Fourier series

The complex Fourier series of f£(x) defined for 0 £ x £ 24
is the periodic function

I a e** (3.1)

k==

g(x) =

where

1 2m _
a, = = [ f(x)e

0

ikxgy . (3.2)

We shall show below that if £f(x) is piecewise continuous and has

bounded total variation then

g(x) = 3 [£(x+)+£(x-)] (3.3)

s <

for O b4 27 and g(x) is repeated periodically outside

0 £ xS 27, In particular, g(0) = g(27) = 3 [£(0+)+£(21-)] .

The Fourier sine series of a function f(x) defined for

0 < x < 1 is the function

gg(x) = ] a sin kx (3.4)
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where
il

a = % ] £(x) sin kx dx . (3.5)
0

The Fourier cosine series of a function defined for 0 < x < 7 is

golx) = ) a, cos kx (3.6)
k=0
where
2 T
a = 75— [ f(x) cos kx dx (3.7)
k 0
with Co = 2, Cx = 1 (k > 0). It follows easily from (3.3) that

if f(x) is piecewise continuous and of bounded total variation then

95 (%) = £_(x) (3.8)

gc(X) fc(X) (3.9)

where fs(x) = fc(x) = 3 [f(x+)+f(x-)] for 0 < x < 7,

fs(—x) = -fs(x), fc(-x) = fc(x) for -7 < x < 0, fs(O) = fs(ﬂ) = 0,
fC(O) = £(0+), fc(w) = f(rv-), and fs(x) and fc(x) are extended
periodically outside the interval - m < x £ 7.

Convergence of Fourier series

To prove (3.3) we define gK(x) as the partial sum

gg(x) = 1 ae (3.11)

Using (3.2) and the trigonometric sum formula
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sin[ (K+3%)s]

% eiks

k==K sin(%s)

we obtain

1 X sin (K+%) t]
gg (X) = 5= ;f{_ £ (x-t)dt (3.12)

2n sin[3t]

The kernel sin(K+%)t/sin3t of the integral (3.2) is
plotted for several values of X in Figure 2.1. This figure
suggests that when f(x) has bounded total variation the leading
contribution to the integral as K + « comes from the neighbor-
hood of t =0 since the contributions from the rest of the in-
tegration region should nearly cancel due to the rapid oscillations

of the integrand. Thus,

1 +c sin[ (K+3)t;
(x) ~ 5= I f(x-t)dt (K>) (3.13)
sinf3t]

9K

-€

for any fixed € > 0. Since ¢ may be chosen small we may replace
sin 3t by 3%t with a maximum error of 0(63). Also since £ (x-t)
is piecewise continuous, we may assume that £(x-t) is continuous

for 02 t<e and -e St <0 with at worst a jump discontinuity

at t = 0. Therefore we may replace f(x-t) by f(x-) for t > 0

and f(x+) for t < 0 giving
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€ sin(K+3)s

gg(x) v [E(x+)+E(x-)] = [ —— " as (Rovo0)
0 S
Since
1 € sin(K+4)s 1 (K+3)e sin s 1 ;" sin s
wl —s——as=3] T ds v ST ds =i (K
0 0 0
for any fixed ¢ > 0, we find that
gg (x) v £ (x+)+£ (x-)] (K+w)

proving (3.3).

In the neighborhood of a point of discontinuity of f(x)
[or x=0 and x = 21 if £(0+) # £(2r1-)] the convergence
of gK(x) to its limit (3.3) as K + « is not uniform. To
investigate the detailed approach of gK(x) to g(x) near a
point of discontinuity X of f(x), we use the asymptotic

integral representation (3.13) to obtain

z 1 ,€ sin[(R+3)t] .
gK (X0+ ;:;) N F_g m f(Xo"'Eg -t)dt (K‘*“’)

for every fixed z. Since ¢ 1is assumed small we can approxi-
mate f(x0+s) by f(x0+) for 0 < s < ¢ and by f(xo—) for

-€ < s < 0. Therefore, for each fixed z and ¢,
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z/ (K+3)

] £ (xg+) sin (K+%) £(xp=) € sin(K+%)t
gy (gt ——) v —— / T ¢t Tw — €
K+3 —e :
z/ (K+3)
(K»e) -
2 e (K+3) )
£ (%) ; £(xg-) sin s
0 sin s 0 sin s )
=——1 == asr——1 s
-€ (K+3%) i
Flxt) 2z . f(x,=) i
N (x ) sin s 4. . 0 sin s 44 (K+)
™ s m S

Since { sin s/s ds = 7, we obtain

-00

1 - i sl
gy (Xg* K—i;) v BLE (xgH) +E (x=) ] + TLE(xpH) £ (xy=)] i (2) C(Kv)

(3.14a)

for anv fixed =z. Here the sine integral Si(z) is defined

4 .
si(z) = = [ 8308 4¢ (3.14b)
m 0 S
A plot of % Si(z) is given in Figure 3.2.

The result (3.14) shows that if x - Xy = 0(§) as K > » then
gK(x) - %[f(x0+)+f(x0—)] = 0 (1). This shows the nonuniformity of
convergence of gK(x) to f(x) in the neighborhood of the discon-
tinuity x,. The detailed description of this nonuniform limit

v

given by (3.14) is called the Gibbs phenomenon. To illustrate the

Gibbs phenomenon in an actual Fourier series, we plot in Figure
3.3 the partial sums of the Fourier sine series expansion of the

function
f(x) = x/m (0<x<T)

The extended function fs(x) is discontinuous at x = 7 leading

to the Gibbs phenomenon there.
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As K » «, the maximum error of the partial sums of a Fourier
(complex or sine or cosine) series in the neighborhood of a point
of discontinuity occurs at the maximum of Si(z) given by (3.14b).
Since Si'(z) = 0 when 2z =nm for n = #1,:2,..., the maximum
error must occur at one of these points. It is easy to argue that

the maximum of Si(z) actually occurs at =z = 7 where

%Si(ﬂ) : .58949 (3.15)

Thus the maximum overshoot of the partial sums of the Fourier

series near a discontinuity occurs near x = Xg + —— for K
K+%
large and is of magnitude
gK(xo+ Ty - f(xo+) N .08949[f(x0+)—f(x0—)] (K-»x) (3.16)
K+3% :

where the quantity in square brackets is the jump at Xq- For the
example ploted in Figure 3.3 the jump of fs(x) at x =7 has
magnitude 2 so the Fourier series gives a local overshoot of
magnitude 0.179.

As z - *+ », Si(z) - + i1 so that (3.14) is consistent with
the convergence of the Fourier series to f(x0+) just to the right
of x

0
only appears when x -+ X, at the rate 1/K as K » =,

and to f(xo-) just to the left of Xqe The Gibbs phenomenon

Rate of Convergence of Fourier Series

If f(x) is smooth and periodic, its Fourier series does not
exhibit the Gibbs phenomenon. The Fourier series of f{(x) con-

verges rapidly and uniformly. If £(x) has continuous derivatives
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of order p=0,1,...,n-1 and f(n)(x) is integrable, then
by applying integration by parts to (3.2) and recalling the

Riemann-Lebesgue lemma, we obtain

ay << 1/k" (k + *o) (3.17)

Here continuity of f(p)(x) also requires f(p)(O) = f(p)(Zn).

For example, if £f(x) 1is continuous with £(0) £f(2r) and
f'(x) is integrable then ay << 1/k as k + o ; if, in addition,
f' (x) is piecewise continuous and f" is integrable then

= 0(1/k%) as k -+ .

%

Now we can be more precise in our estimates of the error
gK(x) - £(x) . 1If a, goes to zero like 1/x™ as k + « then
f(n-l)(x) is discontinuous. In this case,

ge(X) = £(x) = 0(L) (K> =) (3.18)
K

when x is fixed away from a point of discontinuity of f(n_l)
as K » o, while
gg (%) = £(x) = 0(—==) (K + =) (3.19)
K

1 .
when x - x, = O(K) as K » = where Xy is a point of

discontinuity of f(nnl)(x).
In particular, if f(x) 1is infinitely differentiable and
periodic [f(x+2m) = f(x)] , gy (X) converges to f(x) more

rapidly than any finite power of 1/K as K -+ «» for all x
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Fourier sine and cosine series have convergence properties
very similar to the complex Fourier series just discussed. We
summarize these properties for Fourier cosine series. If deri-
vatives of f(x) of order p=0,1,...,n-1 are continuous for
0 <x<n white £P (0) = £ () = 0 for all odd p < n
and f(n)(x) is integrable, then the Fourier cosine coefficients

given by (3.7) satisfy
a << 1/x" (k > ) (3.20)

as may »e proven by integration by parts.
Thus, if f£(x) is infinitely differentiable for 0 < x < 7

and £(%P*1) gy = £(2P*1) 1y = 4 for p = 0,1,... then the

Fourier cosine coefficients ay approach zero more rapidly

than any power of 1/k as k =+ + » , 1In other words, if f£f(x)
is infinitely differentiable on -« < x < =, periodic with period
2m [£(x+27) = £(x)] , and even [f(x) = f(-x)],

then the remainder after N terms of the Fourier cosine series

(3.6) goes to zero more rapidly than any finite power of 1M
as K =+ o |

To compare the convergence properties of Fourier sine and
cosine series, we have plotted in Figures 3.3 and 3.4 some results
for the Fourier sine and cosine expansions, respectively, of
the function x/7 for 0 £ x £ 7, As discussed above, the Gibbs
phenomenon in the sine series expansion is evident at x = 7 (see
Figure 3.3). Observe that the error in the N term partial sum
goes to zero like 1/N as N » « when X is fixed 0 £ x < 7.
In Figure 3.4, we plot the error between the N term cosine series
and x/m. Observe that as N »+ « the error goes to zero like l/N2
for 0 < x < 7™ and like 1/N when x = 0(1/N) as N > o,
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Chebyshev polynomial expansions

The convergence theory of Chebyshev polynomial expansions

is very similar to that of Fourier cosine series. In fact, if

gx) = ] 2T (x) (3.21)
=0

is the Chebyshev series associated with f£(x) for -1 < x < 1
then G(8) = g(cos §) 1is the Fourier cosine series of
F(8) = f(cos o) for 0 <6 < m . This result follows from

the definition of Tn(x): since Tn(cos 8) = cos n 6,

G(8) = g(cosf) =
k

o~ 8

a, cos no . Thus,
0

2 m 2 1 -1
a, = — [ f(cosB)cos k6 d8 = —=— [ £(x)T, (x) (1-x?) 2 gx
k 1l Ck 0 ’n'ck 1 k

(3.22)
where Cy = 2, ck =1 (k > 0).
It follows from this close relation between Chebyshev
series and Fourier cosine series that if f(x) is piecewise
continuous and if f(x) is of bounded total variation for
-1 < x <1 then g(x) = %[f(x+)+f(x-)] for each x (-1 < x < 1)
and g(1) = £(1-), g(-1) = £(-14) . Also, if f£P)(x) is

continuous for all |x| <1 for p=0,1,...,n-1, and f(n)(x) is

integrable, then

a, << 1/x? (k + ). (3.23)
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Since ITk(x)l < 1 for x| <1, it follows that the re-
mainder after K terms of the Chebyshev series (3.23) is very
much smaller than l/Kn'—l as K » o, If f(x) 1is in-
finitely differentiable for | x] < 1, the error in the
Chebyshev series goes to zero more rapidly than any finite
power of 1/K as K » =

The most important feature of Chebyshev series is that
their convergence properties are not affected by the values

of f(x) or its derivatives at the boundaries x = + 1 but

only by the smoothness of f£f(x) and its derivatives throughout

-1 <x < 1. In contrast, the Gibbs phenomenon shows that the
rate of convergence of Fourier series depends on the values of
f and its derivatives at the boundaries in addition to the
smoothness of £ 1in the interior of the interval. The
reason for the absence of a Gibbs phenomenon for the Chebyshev
series of f£(x) and its derivatives at x = #1 is due to the fact
that F(8) = £(cos 8) satisfies F(2P*1)(g) = p(2P*) (1) - ¢
provided only that all derivatives of f(x) of order at most
p exist at x = 1.

While Chebyshev expansions do not exhibit the Gibbs
_ phenomenon at the boundaries x = #1 , they do exhibit the
phenomenon at any interior discontinuity of £(x). 1In Figure 3.5
we plot the partial suwms cf the Chebyshev expansions of'the sign

function sgn x:

o T (x)
2n+
sgn x = - ) (-1)" —721%'— (3.24)

Near x = 0, a Gibbs phenomenon is observed while for x % 0 the

error after N terms is of order 1/N. 1In general, the local
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structure of the partial sums gK(x) of Chebyshev series near

a discontinuity of f(x) is, aside from a simple scaling given
by (3.14):

(Rgt—T o=z ) v S (x+) +E (x,-) ]

g
X -
K43V1-x2

1 _ .
+ [E(xg+)-£(x5=)] Si(z) (K>)
where lxol <1 and 2z is fixed. This equation is derived

by a simple extension of the argument used to derive (3.14)

[cf. (3.33) below for the explanation of the origin of the

/
scale factor 1/ l-xg 1.

Rate of convergence of Sturm-Liouville eigenfunction expansions

Let us consider the expansion of a function f(x) in terms
of the eigenfunctions ¢n of a Sturm-Liouville problem: The

eigenfunction ¢n(x) is a nonzero solution to

d 4n + (A =0
Ix PXlge— + (Agwx)-a(x)) ¢ (x) = (3.25)
satisfying homogeneous boundary conditions. To be specific in

our discussion we assume the boundary conditons ¢n(a) = ¢n(b) = 0,
although the analysis applies more generally. We assume that

< <

p(x) 2 0, w(x) 2 0, qg(x) 20 for a X = b. We will also

assume that the eigenfunctions are normalized so that they satisfy

b

[wix)e, 06 (ax = §__ . | (3.26)
a

and that they form a complete set; the latter property follows if

An + ® as n =+ o (see Courant & Hilbert, 1953, p. 424).
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We wish to estimate the rate of convergence of the eigen-

function expansion

f(x) =) a ¢ (x) . (3.27a)
n=1

Using the orthonormality relation (3.26), the Lz- error after

N terms is

b N : ©
2 2
[1EG) = T age 0l weax = ] ag
n=1 n=N+1

which may be estimated by calculating the rate of decrease of

a > o,
n as n

Orthonormality of {¢n} implies that

b

a = £ £(x)¢, (x)w(x)dx .. (3.27b)

Substituting w(x)¢n(x) from the Sturm-Liouville equation (3.25)

gives

1 b d d(bn
a, = y; f (- ax p(x) = T q(X)¢n) f(x)ax .
Integrating twice by parts, we obtain

a, = = p(x) [ (x)E (x)-¢) REX)T] + . £ h(x) ¢, (x)w(x)dx

Y x=a
n

(3.28)
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where

h(x) = [- Lo & q(x)f(x)] Jw (). (2.29)

This integration by parts is justified if f 1is twice differentiable

and h is square integrable with respect to w. Under these con-

ditions and recalling the ¢n(a) = ¢n(b) = 0, we obtain
a_ =1 [pla)y'(a)f(a)-p(b)g! (b)E(b)] + 0(L1)
n An p ¢n ¢n An
b 2 L, 2
as n >, since | [ h¢ wax [< [ hwdx [ ¢Z wax = 0(1) as
a a a n
n > o« ,

Nonsingular Sturm-Liouville problems

To proceed further we must distinguish between nonsingu-
lar and singular Sturm-Liouville problems: a problem is non-

£ x £ b, The

singular if p(x) >0 and w(x) >0 throughout a
important conclusion from (3.29) is that if the Sturm-Liouville
problem is nonsingular and if f(a) or f(b) is nonzero then

a, v = [P(a)g)(a)E(@)-p(b)gt(IE(B)]  (n » =)

n }\n

(3.30)

]
(Notice that if ¢n(a) = 0, then ¢n(x) =z 0 since (3.25) is
second-order and p(x) + 0). It is well known [Courant & Hilbert
1953] that the asymptotic behavior of the eigenvalues and eigen-

functions of a nonsingular Sturm-Liouville problem are given by
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nt ,tb |w 2
- [ /£ {;dx] (n + ) (3.31)

X
o, (x) v A sin@xn £ J‘g dx) (n > ) (3.32)

Using these relations in (3.30), we find that a_  behaves like

% as n > »., This behavior of a, leads to the Gibbs phenomenon
in the expansion (3.26) near the boundary points at which

f(a) or f(b) # 0. The asymptotic behavior (3.31-32) ensures
that this Gibbs phenomenon is asymptotically the same as that for

Fourier sine series in terms of the stretched independent variable

, b .
X = n(x-a)/w(a)/pla) /[ /w(x)/p(s) ds (3.33)
a

near x = a and a similarly stretched coordinate near x = b.
If f(a) = £(b) = 0 then a, << l1/n as n »+ «., However,
further integration by parts in (3.28) show that if the Sturm-

Liouville problem is nonsingular and if h(a) or h(b) F 0,

then a, behaves like l3 as n »> «, In general, unless f(x)

n
satisfies an infinite number of very special conditions at x = a

and x = b, a, decays algebraically as n » «,
These results on algebraic decay of errors in expansions

based on nonsingular second-order eigenvalue problems generalize

to higher-order eigenvalue problems. For example, the expansion

(-]

coefficients in a in f(x) = nzo an¢n(x), where {¢n(x)} are
the beam functions defined by
1 — p— ’ —
op'tt = A0, ¢ 0 (21) = 0 (21) =0 .
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behave like % if f£(+1) ¥ 0 (implying a Gibbs phenomenon at

the boundaries x = :1), like % if £(+1) = 0 but f£'(:1) % 0,

n
like - if f(¢1) = £'(s1) = 0 but £''''(:1) 4 0, and so on.
n

Singular Sturm-Liouville problems

If p(a) = 0 in (3.30) then it is not necessary to require
that £f(a) = 0 to achieve a, << fL as n -+ o, For this
n

reason, a Sturm-Liouville problem that is singular at x = a does
not lead to the Gibbs phenomenon at x = a. Furthermore, if the
argument that led to (3.30) can be repeated on h(x) given by
(3.29( [this is possible if p/w, p'/w, and g/w are bounded and

all derivatives of f are square integrable with respect to w]

then the boundary contribution to a, from x = a 1is smaller

than L as n - », If there are no boundary contributions

"
from x = b when the operations leading to (3.30) are repeated

indefinitely {[which is true if p(b) = 0}, then a, decreases

more rapidly than any power of fL as n > o,
n

Fourier—-Bessel series

A Fourier-Bessel series of order 0 1is obtained by choosing
the expansion functions to be the eigenfunctions of the singular

Sturm-Liouville problem

d d¢n '
&X ax—' + XnX(t)n =0 (0 < x < l) (3-34)
¢n(1) = 0, ¢n(0) finite
Therefore, p(x) = w(x) = x in (3.25) so the problem is singular

at x = 0, but nonsingular at x = 1. The eigenfunctions are
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¢n(x) = Jo(jonx)

where J0 is the Bessel function of orxrder 0 and jOn is its
2
nth zero, Jo(jon) = 0. The eigenvalues kn = jon satisfy
Jon ~ (n= A)m (n>w) .

The Fourier-Bessel expansion of a function f(x) is given by

o
g(x) =} a J5(i %) (3.35a)
n=1
where (3.27) implies that
2 1
an = F——)—z- {) tf (t)JO(jont)dt (3.35b)
0 Jon
since
fltJ (5 t)2at = 2315 2
0 0 ‘Jon B 0‘Jon
For example, the Fourier-Bessel expansion of f(x) =1 |is
1=_°f 2 I (5__x) (3.36)
Sy . 0 ' -on :
n=1 35090 Uon!

In Figure 3.6 we plot the 10, 20, and 40 term partial sums of the
series (3.36). There are three noteworthy features of these olots
that we will discuss:

(i) At x =1 there is apparently a Gibbs phenoﬁenon. In
fact, it is easy to show that this Gibbs phenomenon has the same

structure as that for Fourier sine series:
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2 T2

N
- I (5 - —28) &1+ 2 5i(z) (Noo)
n=l 3 J'(3 ) 0 -“on N+l ﬂ
Jon" 0 jon 2
Py
Since Jo(z) v (2/mz)° cos(z-%w) as z »> + «, the large

n behavior of (3.36) can be asymptotically approximated by
that of Fourier series.

(ii) For fixed x satisfying 0 < x < 1,

N
1+ 2

x) = 0(3) (N>e)

2+

JA (3
. . 0'“on
n=0 Joan(Jon)

In fact, the nth term of the series has magnitude of order 1/n
and oscillates in sign roughly every min (%, T%;) terms. The
error in such an oscillating series is ‘of order 1/N after N terms.
(iii) At x = 0, the series converges (so there is no Gibbs
phenomenon there) but the convergence is very slow and oscillating.

In fact, the error after N terms is of order (-l)N+l//ﬁ .

This follows because

N o n N+1
l + Z 2 " /?r z (_l) ", (-l) . (N*w)
n=0 j__J! ) n=N+1 v n v 2N

(3.37)

This slow rate of convergence near x = 0 holds even though the
eigenvalue problem is singular at x = 0. There are two reasons
why Fourier-Bessel series convérge slowly near x = 0. First,

the Gibbs phenomenon at x = 1 affects the rate of convergence
throughout 0 £ x £ 1. 1In fact, this is the sole source of the

behavior (3.37). When f'(x) % 0, slow convergence near x = 0
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can also originate from the property that p(x) = w{x) = x gives
p'/w = 1/x which is singular at x = 0 so h(x) given by (3.29)

is singular at x = 0 if £'(0) % 0.

Chebyshev series revisited

The Chebyshev polynomials are the eigenfunctions of the singu-

lar Sturm-Liouville problem (3.25) with p(x) = /l—xi,
w(x) = l//l—x2 , g(x) =0, -1%x =1, and the boundary conditions

¢n(il) finite. The eigenvalue corresponding to Tn(x) is

A = nz. Sine p/w = l-x2 and p'/w = -x are both finite for

n

|x|<1, it follows that the argument leading from (3.27) to (3.30)
can be repeated on h(x) given by (3.29) so long as f£f(x) is
sufficiently differentiable. Therefore, the ChebysheQ series
expansion of an infinitely differentiable function converges
faster than any power of 1/n as n » o, as shown above by a
different method.

To illustrate the convergence properties of Chebyshev series

expansions, we study the rate of convergence of the series

sinM = (x+a) = 2 ) ;LwJ (M) sin(Mra+inn)T_ (x) Ix] 1
C_ n n
n=0 "n
(3.38)
Since Jn(Mn) + 0 exponentially fast with n for n > M, it

follows that (3.38) starts converging very rapidly when more
than M terms are included (see Figure 3.7), and the conven-
tional interpretation of these results is based on the fact

that sin M7 (x+a) has M  complete wavelengths lying within

ixl <. Thus, in order for Chebyshev expansions to converge

rapidly it is necessary to retain at least 7_polynomials per

wavelength (see Orszag & Israeli, 1974 for a similar discussion

of finite difference methods).
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Legendre series

Legendre polynomials are the eigenfunctions of the singular

. 2
Sturm-Liouville problem (3.25) with p({x) = 1-x, q(x) = 0,
wi(x) =1 for -1 £ x 21 and the boundary conditions are
An = n(n+l) and its eigenfunction is An(x) = Pn(x), the

. 2
Legendre polynomial of degree n. Since p/w =1=Xx and

p'/w = -2x are both finite for |x| = 1, it follows that the
Legendre series expansion of infinitely differentiable functions
converges faster than algebraically.

To illustrate the convergence properties of Legendre series,

we study the convergence of the series

1
V2M n

sin Mrm (x+a) = (2n+l)Jn+%(Mn) sin(Mwa+§nn)Pn(x)

e~ 8

0
(3.39)

It follows from (3.39) that Legendre polynomial expansions of
smooth functions converge rapidly provided that at least

m_polynomials are retained per wavelength. (See Figure 3.8)

‘ When a discontinuous function is expanded in Legendre series,
the rate of convergence is no longer faster than algebraic. 1In
the neighborhood of a discontinuity, a Gibbs phenomenon occurs
whose local structure is the same as that for Fourier series

‘ with a suitable stretching of the coordinate. For example, the

Legendre series expansion of the sign function sgnx is

‘ sgnx =7 (=1)7(4n+3) (2n)1
n=0 2°"1(n+1)1ny

P2n+1(x) (3.40)
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The partial sums of this series are plotted in Figure 3.9. Three
features are noteworthy: |
(i) The Gibbs phenomenon near x = 0 has the same structure
as that for Fourier series.
(ii) The error after N terms behaves like 1/N for |x|[<1,
x # 0. This follows from the fact that the (2n+l)st Legendre
coefficient in (3.40) satisfies

(4n+3) (2n)!

an < (—l)n 2n+1

n 2

= —) (n—)oo) (3.41)
(n+1)!n! Yyn

and the estimate

P_(x) = 0(2) (n > )
/

for |x| <1; the series (3.40) is an alternate series if x

is fixed away from zero so the error after N terms is at most
2
(=% .

%

order

(iii) The series converges only like 1//N at x = tl. This
follows from (3.41l) because Pn(tl) = (#1) for all n. Thus,
an interior Gibbs phenomenon in a Legendre series expansion has
a 'long-range' effect in the sense that it seriously affects the

rate of convergence at the endpoints x = *1 of the interval.

Laguerre expansions

Laguerre polynomials are the eigenfunctions of (3.25) with
p(x) = xe™®, q(x) = 0, w(x) =e * for 0 x <= with e *%_(x)

bounded at x = 0 and «., The gth eigenvalue 1is kn = n and
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the associated eigenfunction is Xn(x) = Ln(x), the Laguerre poly-
nomial of degree n. If £(x) and all its derivatives are smooth

and satisfy
£(x) = 0(e*®) (x> ®)

for some o < 3, it is easy to show by retracing the derivation

of (3.30) from (3.27) that the Legendre expansion

£(x) = ) a L (x)
n=0

converges faster than algebraically as the number of terms N » =,

To illustrate the rate of convergence of Laguerre series,

we consider the expansion of sinx:

1

(n+1)/2

o«
sinx = ]}
n=0 2

cos %(n+l)Ln(x) (3.42)

pS

which converges for all x, 0 X < ®, Since

L_(x) ~ = e%xx-%n_i cos{2v/nx -imr) , (3.43)
n /—
T

[see Erdelyi et al 1953, Vol. II, pg. 200} it follows that if

N > > %, then the error after N terms at x 1is roughly

eéx
2N/2(Nx)%
This error is small only if Nfn 2 > x or N 2 1.44x. Since

the wavelength of sinx is 27 , Laguerre expansions require

approximately 9.06 polynomials per wavelength to achieve high
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accuracy. (This figure may be reduced to about 6.53 polynomials
per wavelength by using the modified Laguerre expansion

X and optimizing the choice of a.) Thus, Laguerre

) anLn(x)e'“
expansions require many more terms to resolve a function of given
complexity than do other Chebyshev or Legendre expansions. The
reason is that significant weight is given to x =+ + « in the
Laguerre series where sinx has an essential singularity.

In Figures 3.10-12, we plot the partial sums of (3.42) with
N = 10, 20, and 40 terms. Observe that the number of wavelengths

of sin x represented accurately by (3.42) is roughly N/9.

Hermite expansions

2
Hermite polynomials satisfy (3.25) with p = e ¥ , gix) = 0,
2 -

-X -%xz

wix) = e for - o <x < ¢ (x)e bounded as |x| > =.
The Hermite polynomial Hn(x) of degree n 1is associated with

the eigenvalue An = 2n. If £(x) and all its derivatives satisfy

2
£(x) = 0(e**) (|x] + =)

for some o < 3, then the Hermite expansion

f£(x) =] aan(x) ‘
=0

converges faster than algebraically as the number of terms N > =,
This is proved by retracing the steps leading from'(3.27) to (3.30).
To study the rate of convergence of Hermite series, we consider

the expansion of sinx:

sin x = ) Hy o hp (%) (3.44)

220t o1y
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Since the asymptotic behavior of Hn(x) is given by [Erdelyi,

et. al 1953, vol. 1II, pg. 201]

2

!
H (x) v e® i cos (VAL x - #am)

(S

as n +» o for x fixed, it follows that this error after 2
. . X
terms of (3.44) goes to zero rapidly at x only if N 2 Tog %

This result is very bad; to resolve M wavelengths of sinx
requires nearly M2 Hermite polynomials! [By expanding in the
series aan(x)e-O‘x and optimizing the choice of a, it is
possible to reduce the number of required Hermite polynomials to
about gwr = 7.85 per wavelength, but this is still quite poor.]
Because of the poor resolution properties of Laguerre and

Hermite polynomials the authors doubt they will be of much prac-

tical value in applications of spectral methods.
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4. Review of Convergence Theory

The fundamental problem of the numerical analysis of
initial value problems is to find conditions under which
uN(x,t) converges to u(x,t) as N + o for some time in-
terval 0 < t < T and to estimate the error |lu - ugfl .

The principal result is the Lax-Richtmyer equivalence theorem

which states that stability is equivalent to convergence for

consistent approximations to well-posed linear problems. The

terms stable, convergent, and consistent relate to technical
properties of the approximation scheme which are defined below.

An approximation scheme (2.5-6) is stable if

< K(t) : (4.1)

for all N where K(t) is a finite function of t . Here

the operator norm is defined by

L.t
L.t N ;
lle N | = max Ale " ufl
uey [[ul]

An approximation scheme is convergent if
fu(t) - uN(t)H > 0 as N » o

for all t in the interval 0 < t < T and all u(0)eH and

f(t) eH. Finally, an approximation scheme is consistent if

|Lu - Lui] -+ o

(4.2)

lu - Pl > o0
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as N » o for all u in a dense subspace of H .

The foregoing definitions are standard and the Lax-Richtmyer
theorem relating them is very well known (Richtmyer & Morton 1967).
In this monograph we are confronted with some subtleties in the
application of these ideas which will require some extensions of the
notions of stability and convergence. 1In order to motivate these
extensions, we outline here the proof of the Lax-Richtmyer theorem.

To show that stability implies convergence we use (2.1)

and (2.5) to obtain

Bu-uN
T = LN(u-uN) + Lu - LNu + £ - fN
sSO
Lyt
u(t) - u(t) =e [u(0)-u,(0)]
t Ly(t-s)
+ [ e [Lu(s)-Lyu(s)+£(s)-f (s)] ds  (4.3)
0
Using (4.1) and (4.3), we get
lutt)-ug(t) || < K(t) lu(0)~uy (0) ||
t
+ [ K(t-s) [|Lu(s)-Lguls) || + ||f(s)-fN(s)||] ds
0

(4.4)

Thus, if wu(t) belongs to the dense subspace of H satisfying
(4.2) and if £f(t) belongs to the dense subspace of H satisfy-

ing ||f - Pyfll >0 as N+ =, then [lult) - u ()|l >0
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as N » o« ., Since all solutions u(t) of (2.1) can be
approximated arbitrarily well by functions satisfying (4.2),
the proof that stability implies convergence is completed.

Conversely, to show that convergence implies stability,

LNt

we first observe that, for any ueH , |le © u]| is bounded

for all N and each fixed t . In fact, convergence implies

Lt L.t
0 < |lle Nul| - |le¥)| < lle Nu- ety + o, (N + )
while well-posedness requires that I[eLtull is finite. How-
L.t
ever, max||e N u|| may depend on u and on t , so stability

N
is not yet proved. To complete the proof we use the fact that

H 1is a Hilbert space. The principle of uniform boundedness

L.t
(Richtmyer & Morton 1967) implies that if ||e N

e

u||] is bounded
as N > » for each t and ueH then |le is bounded as
N + o« for each t . This proves stability.

Using the Lax-Richtmyer theorem, the study of the conver-
gence of discrete approximations to the solutions of initial-
value problems is reduced to the study of the stability of the
discrete approximations, assuming the approximations are con-
sistent. Thus, the development of conditions for the stability
of familjes of finite-dimensional operators LN is of primary
interest in numerical analysis.

The simplest condition for stability is due to von Neumann.
Let us suppose that the Hilbert space H possesses the inner
product (,) . If each LN is a normal operator [that is,
defined with respect to (,) commutes with

*

the adjoint LN
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* *
= ili is equivalent to the
LN so LyLy LNLN ] then stability q

von Neumann condition

ReAN < C (4.7)

where AN is any of the eigenvalues of any of the operators

LN and C is a finite constant independent of N . To prove

. *
this, we note that if LN is normal, then LN and LN as

*
well as exp(LNt) and exp(LNt) , are simultaneously diag-
nolizable. Therefore,

* t
L.t LN

L.t N 2(Re) )t
e Nbllz = max (u,e(u e) 9 - max e N
ueH e A
N
where AN are the eigenvalues of LN . Thus, the von Neumann

condition (4.7) is equivalent to the stability definition (4.1)
with K(t) = exp(2Ct) .

The von Neumann condition gives an operational technique
for checking stability of normal approximations: compute the

eigenvalues of L and check that the real parts of the eigen-

N

values are bounded from above.

Example 4.1: Symmetric hyperbolic system with periodic
boundary conditions

Let us apply the theory just discussed to the stability

of difference approximations to the m-component symmetric

hyperbolic system

> ->

su(x,t) _ du(x, t)

e A —— (4.8)
with periodic boundary conditions u(0,t) = Q(l,t) .




> ' . . .
Here u is an m-component eigenvector and A is a symmetric
m x m matrix.

If we discretize in space using second-order centered

differences, we obtain

-»> >
ou. u. - u.
J - A

5t TN (3 =1,2,...,N) (4.9)

> _ - _ >
u,(t) = uN(t) ' ul(t) = “N+1(t)

where ﬁk(t) = u(k/N,t) and Ax = 1/N . The system (4.9)
is equivalent to the system of mN equations

a6

e - B u (4.10a)

where 17 = (ﬁl,ﬁz,...,ﬁN) and B is the mN x mN matrix
given as the Kronecker product
B = A@D (4.10b)

where A is the m x m matrix in (4.8) and D is the

N x N matrix .

0 1 0 0...0-=-1
-1 01 0...0 O
. 1 0-1 0 1...0 O
2Ax . . e . . .
‘ L] [ ] L ] L ] L] L ]
\ 1 0 0 O -1 0 .

D is anti-symmetric (and, hence, normal) go it has
eigenvalues 0 and pure imaginary. 1In fact, the
eigenvalues of D are i sin(2nkAx)/Ax for k =

0,1,...,N~1. Thus, the norm of exp(Bt) satisfies
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llexp(Bt) || = max |lexp(iA sin(2nkAx)t/Ax|] = 1,
0<k<N

where we use the fact that A is symmetric so it has real eigenvalues,

If the approximate evolution operators LN are not normal,
conditions guaranteeing stability are much harder to obtain.
One important case in which stability conditions can be obtained
is for the problem studied in Example 4.1 with A no longer
symmetric. More generally, suppose the approximation LN has
the form Lg = A ®DN where A is a fixed m x m matrix
(possibly not normal) and DN is an N-dimensional normal matrix.

It is easy to show that

llexp(LNt)ll = ﬂfx||exp(kNAt)|| (4.11) .
N

where AN is any of the eigenvalues of DN .
To investigate the stability of exp(LNt) we generalize
(4.11) further and seek conditions for the stability of a family
of mxm matrices A(w) , where w 1is an arbitrary parameter.
That is, we seek conditions such that
max |lexp[A(w)t]]] < K(t) ,
w
where K(t) is a finite function of t. Once these general
conditions are found, they can be specialized to give stability
conditions for families of the form ekp(LNt) where LN=AQ§>Dﬁ with
DN normal by choosing A(w) = Aw where w 1is any of the

eigenvalues of any of the matrices DN

-58-




The basic result on the stability of families of m x m

matrices is the Kreiss matrix theorem (Kreiss 1962):

For any family A(w) of m x m matrices, each of
the following statements implies the next:

(1) There exist symmetric matrices H(w) satisfying
H(w)A(w) + A*(w)H(w) < 0 and
I < H(w) , ||Hw)]] ¢« € for some constant C .
(ii) llexp(A(w)tl]] < C© for all t > 0 .

(iii) (Re A)H(XI-A(w)-lH < C' for some constant C'
and all A satisfying Re A > 0 .

(iv) There exist matrices H(w) satisfying (i) with
[lH(w) || £ K(m)C' where C' is the constant
appearing in (iii) and K(m) depends only on
m and not only the family A(w) .

Observe that for a family of métrices A(w) to satisfy
the conditions of this theorem it is necessary that all the
eigenvalues of all the matrices have non-positive real parts.
Otherwise there would be some w and some eigenvector U satis-
fying |lexp[A(w)t]d|| » = as t + o violating (ii).

The most important relation implied by this theorem is the
implication that (iii) implies (ii) with C < K(m)C' That is,
for any m x m matrix A all of whose eigenvalues have nonposi-

tive real parts

llexp(at)]] < K'(m) max (Re A)II(AI-A)_lll (4.12)
Red >0 S . ,
where K'(m) is a finite function of m .
An elementary proof of (4.12) has recently been given

by Lapfev (1975) and improved by C. McCarthy (private communica-

tion to G. Strang, 1975). Lapfev observes that if v > 0 , then
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vt

an = %_J e (vrip-a) "t ap ,  (4.13)
—-co

as may be proved by shifting contours in the complex plane.

Since each entry of (\)+;‘L1_(-A)_l is a rational function in

of degree at most m , the derivatives of the real and imaginary
parts of each entry can change sign at most 4m times when

increases from -»o to o . On any u-interval, say a < u < b,

where the real and imaginary parts of an entry in (\)+iu—A)-1
are monotonic, the second mean-value theorem implies
b sin(ct) - sin(at) in(bt) - sin(ct)
J cos pt £(p) dy = f(a)[ inta ] + £(b) [sin S1nic ]
a t L t
< % max |£(u) | ,
U
for some ¢ satisfying a < ¢ < bwhere f(p) = Re(v+iu—A)Z% .
Thus, for all 1i,j
* dpt 1 64 1]
iy N m LAy
Jﬂne (v+ip A)ij du < T nﬁxl(v+1u A)ij' . (4.14)
If it is true that the matrix norm has the property that
lBijl < €4y for all i,j implies |[[B||<]lcll , then (4.14)
implies
e it 1 4 1
II etH (v+ip=-A) dul| < tm max (v+iu-A)-_ (4.15)
-0 H

Choosing v = 1/t in (4.13-15) gives (4.12) with X'(m) = 64 m
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There are three important matrix norms in which

lBijl < Gy for all i,j implies ||B||] < ||c]], namely
the matrix norms induced by the Ll' L2' and L, vector

norms. This is shown using the relations

m
”B“l = m?x iil lBijl
i) Doz
B = sup z I B..xX.vy.
2 lxllp=1 im1og=1 MR
Hyll =1
m
IBll, = max I |[B,.|
i j=1 1]
which hold for all matrices B . In other norms lBiji < €45
may not imply ||B|| < ||c|| but the equivalence of all matrix norms
implies || B || < F(m) |l{C|| for some finite function of the

dimension m. Thus, (4.12) is obtained with K'(m) = 64mF (m) .
The functions K(m) appearing in statement (iv) of the

Kreiss theorem and K'(m) appearing in (4.12) need not be equal.
It follows from the Kreiss theorem that K'(m) < K(m) . Kreiss
‘showed only that K(m) = O(m") as m - « ; this is much too
conservative. Miller & Strang (1965) showed that X(m) = O(Cm)
as m > o for some constant C > 1 .
In the case of a.normai‘family of_mafrices- A(m). the con-
ditions of the Kreiss matrix theorem are trivially satisfied:

if the eigenvalues of A(w) have negative real parts then

llexp(A(w)t]]] < 1 for all t >0 and w .
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Unfortunately, the class of semi-discrete approximations
investigated in this monograph does not easily fit within the
class of problems to which the above stability conditions can be
applied. 1In contrast to the classical problems of the numerical
analysis of difference methods for initial-value problems,
spectral approximations Ly are frequently not normal nor even
approximately normal. |[There is an important extension of
stability analysis to non-normal approximations obtained by
finité-difference approximation to mixed initial-boundary
value problems. The non-normality of these problems is fre-
quently induced by the boundary conditions and constitutes a
small perturbation of a normal approximation. 1In this case,
extensions of von Neumann stability analysis, like that intro-

duced by Godunov and Ryabenkii (see Richtmyer & Morton 1967)

apply.]
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5. Algebraic Stability

In this section, we develop a theory of stability and
convergence which generalizes the classical theory discussed
in Sec. 4. As will be shown by examples in Sects. 6-9, this
generalized stability theory is well suited to study the con-
vergence of spectral methods.

A spectral approximation

auN
—5— = LNuN + fN (5.1)
to the initial-value problem u, = Lu + £ is called

algebraically stable as N+ o if

lleLNtll < NNSER(t) (5.2)
for all sufficiently large N , where r, s, and K(t)
are_finite for 0£t<T.

It may at first seem that the Lax-Richtmyer theorem shows
that algebraically stable approximations cannot be convergent
unless (5.2) holds with r <0, s< 0. In fact, if we
demand that the approximations converge for all u(0) and
f(t) in the Hilbert space ¥, this conclusion is correct.
However, it is possible”for approximations that satisfy (5.2) .
with r>0 or s>0 to ¢onvefge-on a dense éubset of
the Hilbert space in which the only functions for which con-
vergence is not obtained are highly pathological. In fact, if

P=1r +sT >0 but p is smaller than the order of the
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spatial truncation error of a particular solution u(x,t) , 1i.e.

NP [lLu(t) - Lue) |l > 0 (N » ) (5.3a)
NP {lu0) - uw(0) |} > o0 (N + ) (5.3b)
NP |l£(e) - £(0) ]+ 0 (N +> ) (5.3c)

‘ for all 0o<txgrT, then (4.4) and (5.2) imply that
Il u(t) - uy(t) ] =+ © (N + =)

for 0 £t<T. Thus, algebraic stability implies con-
vergence in that subspace of }M satisfying the conditions
(5.3). 1If this latter subspace is large enough, an algebraic-
ally stable method can still be very useful although it cannot
yield convergent results for all initial conditions u(0) and
forces £f(t) . Since spectral methods are normally infinite-
; order accurate, algebraic stability implies convergence for

such spectral methods.

In the examples of algebraic stability given in Sects. 7-9,

we find r < % ’ s <0, and K(t) < M . In this case,
algebraic stability implies convergence so long as (5.3) holds
with P < % . Thus, the approximation need not be infinite-

order accurate to achieve convergence. However, we develop the
general theory of algebraic stability here in the expectation
that it will find application to spectral methods for high-order

equations in which p may be large.
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Oour definition of algebraic stability is very similar
to the notion of s-stability introduced by Strahg (1960) .
However, our motivation is slightly different. Strang intro-
duced s-stability to study the convergence of time-discretized
initial-value problems in which the norm of the evolution
operator grows as a power of the time step. We shall return
to this concept of s-stability in Sec. 10.

Let us give an illustration of the need for a theory of
algebraic stability. 1In Sec. 8, we will discuss Chebyshev
polynomial spectral methods to solve the one-dimensional
wave equation u t+tu, = f(x,t) with boundary conditions
u(-1,t) =0 . Unfortunately this problem is not well posed

in the Chebyshev norm

|2 8 () gy

in fact, if

u(x,0)

t
]

then the solution of u, + ux =0, u(-1,t) = 0 at
by

1 is given

ol o
o

l-e < x <1

u(x,1) =
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Therefore, as e »~ 0+ ,

Hu(x,O)Ii2 v ooe (e » 0+)
2 2
luGe, DS ~ 3 /2Ze (e + 0+) ,
that if L = - =&
SO a 1 ax 14
;-1

jeki > dstehl o (87 CF chon G

In fact, |[e'®]] = « for o0<t<2, | = o

for t > 2, so the one-dimensional wave equation is not
well posed in the Chebyshev norm.

Since the finite~dimensional approximations Ly to L
given by Galerkin, tau, and collocation approximation (see

Sec. 2) should converge as N =+ o , it follows that we may

expect

¥
8

lexp (Lyt) |

as N » @ in the Chebyshev norm. To estimate the rate of
divergence of Hexp(LNt)H as N + » we argue that

Chebyshev polynomials of degree at most N can resolve dis-
tances of at most order 1/N interior to (-1,1) SO we

may reasonably guess on the basis of (5.4) with e = 1/N that

1
llexp (L t)]] = 0(N 4) (N> ® . (5.5

This result is justified by the numerical results presented

in Table 8.3.
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Thus, we expect that Chebyshev-spectral approximations
to the one-dimensional wave equation are not stable but are
algebraically stable with r = 1/4 and s =0 in (5.2).

Notice that algebraic stability in one norm implies
algebraic stability in all algebraically equivalent norms.
Thus, algebraic stability is equivalent in all of the Lp
norms l<pgw= because these norms are algebraically
equivalent in’ N-dimensional vector spaces (i.e., they differ
from each other only by a fixed power of N ). To show this,

we recall that the Lp norm of a vector 3 = (al,...,aN)

is defined by

N 1/p
lall, = _zllailp :
l=

I1f g = pa with 0 <acx<1l, then

N
| qa _ 5 | a Ll-a/p
.lal|q z |a xlaHED N

g
Q
A
(I 3o I~
3
|..n.
o)
N~z
|,..l
It

by Holder's inequality. Therefore, for all p>1,

1

N lally < Hlallg
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Also, if p>1, then

N N
P
lally = = lagl® < [ 2 lajl} = dlally
i=1 i=

so that

A

1
N lall; < lall, < llally - (5.6)

The verification of algebraic stability for spectral
methods leads to a general problem in matrix theory. Suppose
that AN(N=1,2,...,) is a one parameter family of matrices.
We will find conditions on the members of the family such that
exp (ANt) is algebraically stable. We will use only the L2

norm since the others are equivalent to it.

Conditions for Algebraic Stability

Let {AN} be a family of N x N matrices where
IlANll = o(N% (N > =) for some finite a . A necessary

and sufficient condition for algebraic stability

A .t
le ¥ || = O(NrNSt> (N + )

is that there exist a family {HN} of Hermitian positive-

definite matrices such that




IIHI'qu lagll = ow®) (N + ) (5.7a)

* .
HNAN + ANHN < c(N)HN (5.7b)

c(N) < d log N (5.7¢c)

for all sufficiently large N where b and d are finite
numbers independent of N .

To prove sufficiency we use the Lie formula

n
Lo oo (eCt/n eDt/n) (5.8)

n->co

which is valid for arbitrary matrices C and D . This

formula is proved at the end of this section. If we define

(5.9)

o
1
N
—
o]
2
Nf =
g
Z
fo ol
Z
)
2}
1
m
2
|
N =
2
o
2
N
| S

and note that

IR
= 2, '
exp [ANt] = HN _,exp-[HN, ANHN’ t] HN '
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it follows from the Lie formula that

e = l1lim H
n-o

At -£ n 1
N y 2 (eCt/n eDt/n> HN7 (5.10)

However, it follows from (5.7b) that, since C is a

symmetric matrix,

HeCt/nll < ect/n

Also, D is an antisymmetric matrix so that

1252 = 1

Therefore, (5.10) gives

1 1

At -=
et Ny 21l Nl < SN2

N
lle = 1l

N

proving algebraic stability.
In order to prove that the conditions (5.7) are also

necessary for algebraic stability we define

By = Ay - (r+l) log(\)I .

Therefore,

B .t S : |
le ™11 = o (gg) | (N » @) .
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By Liapounov's theorem (Barnett & Storey 1974) there exists

a Hermitian positive-definite matrix H such that

N
. . :
HNBN + BN Hy = -1, (5.11)
Thus,
*
HNAN + AN HN = =-I 4+ 2(r+l) log N HN < c(N)HN
where c(N) = 2(r+l) log N . In order to complete the

proof of (5.7) we need to estimate the norms of HN and
-1

HN . It can be easily verified that an explicit formula
for HN is
B.t B *t
oo
HN = f e N e N dt .
0
Therefore,
(°° B _t B "t ®
gl < | oe M le™ I ar < W% | w7 ar < %S
- Jo 0
if 2 &nN > 1, i.e., N>2. Also from (5.11) we obtain
- - * -
B H "'+ u B =--(HNl)2
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so that

or

< 2Byl = ow? (N + =) (5.12)

This completes the proof of the necessity of (5.7).

The above result gives a method for checking numerically
the algebraic stability of a family '{AN} of matrices satis-
fying ||Agll = o®) as N+ e :

(i) We check that the real parts of the eigenvalues

of A are bounded from above by s log N ;

N
otherwise, the family of matrices AN are alge-
braically unstable.
(ii) We introduce BN = AN = (s+l)log(N)I and

compute the Liapounov matrix HN such that

*
HNBN + BN HN = =1 . There are several numeri-
cally efficient techniques to compute HN
(Bartels & Stewart 1972).

(iii) To verify algebraic stability the condition number
of HN must be bounded by Nb for some finite b
as N +> o | Noting (5.12), it is only necessary
to verify that the eigenvalues of H are bounded

N
from above by some finite power of N as N > =




This procedure is applied in Sec. 8 to verify algebraic
stability of some problems. Since (5.7) gives a necessary
and sufficient condition for algebraic stability, if these
conditions do not hold the family of matrices Ay is alge-
braically unstable.

Finally, we prove the Lie formula (5.8) for finite

dimensional matrices. First, we write

c o\* (C+D>n cD
eC+D _ (enen = e\ D _ enen
1 <C+D>k ctb  cDp\[ cp\*ik
= r e\’" SRS R elel .
=0
Thegefore,
. cDy\" 1 « C+D C D
+ - s —— — —
le -<nen)n <z ellOliy e L Gy
k=0
n-l-k
x(encn + wu) "
C+D cD g n=1
< lle® -e""| ne ™
where
e = ic)j + liolI .
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On the other hand,

C+D cCD
e P - efe?|| < _UEEL%QM_ + o(i%) (n + ©)
2n n
so that
c D"
”eC'l'D _ (enen ) ” < _g_ (n > «)

for any K > %HCD-DCH , proving (5.8).

Eg. (5.8) is also true for certain infinite dimensional
matrices (operators). This deep result, called the Trotter
product formula, is very useful in the modern theory of

partial differential equations.
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Fig. 3.2. A plot of the sine integral Si(z) ‘defined in (3.14b) for O f.zlj 15.

-79-~

15



*UL > X > (0 Teaxdjur 9yl
JO 10TI23UT ¥Y3 UT X 03 N/T ONIT ST SOFI°2s I3[anog

.34yl jJo o0ouaSioAuocd JO 23B1 9Yl IBY]J S9AIISqO OSTY * I = X IeaU
uouswoudyd SqqTH Y3 2a138qQ °pa3ofd OsTe ST u/X UOFIdUNF BYJ
*07°0Z°0T=N 103 u/X uwOoF3ouny 3yl Jo uofsuedxs SITI3S DUTS

1stanogj 9yl Jo suns Jefiied wisl-N syl Jo joyd y ‘€°¢ 811

¢ 1

-80~




"L >X >(Q TBAISIUF Oyl JO I0TILIUT 9Yl UT X POXI]
103 Nz\ﬁ O)FT S9SE2109p 10119 9Y3 IBYJ DAISSO ‘OSTY
"L=X PUB (=X J1BAU N/T O S9STIIIOP 1011d °oy3
‘uousuwousyd sQqIH ou ST 919Yy3 JEY] BAIISqQ *0Y0Z°0T=N
103 u/X 3O UOTsuedxs SoTI0S BUTS0D 19TaInog 9yl uf

0=u ’
L/X - xu mooum w 10112 ayy jo joyd y *H°¢ *313

N

N

—$20°-

T4V

-81-



* 0#X PIXT3 103 N/T

9FT S2819AU0D S2T19s 9yl JBY] BAIISQO OSTY °(Q=X
aesu uouswousayd sqqiH oyl aaxasqQ 'pailzord osTe

ST X uds uoflouny 9yl °‘Q%‘0Z‘0T=N 103 Axvza
I233e pajeduna] x uds JI03J (yZ°'€) SOTIIS AdYSAQaY)
?y3l jo suns Teflaed syl 3o joyd v °¢°¢ °"I14

1

-82-~




X

‘0 aesdu Xx 103

NA/T ®AFT Pue 4 > X > 0 Surdysyies x poxyg

103 N/T 9T 59319Au0D S3FI98 9yl 3JBY] 9AI9SQO

OSTY T = X Jaeau uouswouayd sqqin °Y3 8A19sqQ
*SWId) O4Q0Z0T=N I93Je pajeduniy T uctjouny

943 3o (9€°€) uoFsuedxa S9TI9S TosSSag-I9FINOg

343 jo suns ferjaed ayjz jo joyd y g-¢ “wﬁm

_.-_-——-‘—_—-.-q_-—-----—--.-—---_‘a_u~———-—_-—H—_—_~.-_-—_-—_-_-_——-—--_ﬂ-—-_-_—_-

‘T

ST

-83-



107t

v IT‘]

Lz—error

L.

T
Q

10

l"lllll

L

10~

T YT'llll

T

X

T

10~

I77Tlf|l

T

10~

2 3 N/M 4 5

Fig. 3.7. A plot of the Lz—error in the Chebyshev series expansion (3.38) of
sin(Mmx) truncated after TN(X) versus N/M. The various symbols represent:

ON=10; xN=20; AN-=230; 0N-=40. Observe that the Lz—error approaches

zero rapidly when N/M > T,
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. Fig. 3.8. A plot of the L,-error in the Legendre series expansion (3.39) of
sin(Mmx) truncated after P (x) versus N/M. The various symbols represent:
ON=10; xN=20; AN=230; 0N-=40. Observe that the L,-error approaches

zero rapidly when N/M > 7.
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